Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

sin^(2)theta*sec^(2)theta
Answer:

theta

Simplify to a single trig function with no denominator.\newlinesin2θsec2θ \sin ^{2} \theta \cdot \sec ^{2} \theta \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinesin2θsec2θ \sin ^{2} \theta \cdot \sec ^{2} \theta \newlineAnswer:
  1. Express sec(θ)\sec(\theta): Express sec(θ)\sec(\theta) in terms of cos(θ)\cos(\theta) as sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}.
  2. Substitute and simplify: Substitute sec(θ)\sec(\theta) with 1cos(θ)\frac{1}{\cos(\theta)} in the given expression to get sin2θ(1cos(θ))2\sin^{2}\theta\left(\frac{1}{\cos(\theta)}\right)^2.
  3. Recognize equivalent form: Simplify sin2θ(1cos(θ))2\sin^{2}\theta\left(\frac{1}{\cos(\theta)}\right)^2 as sin2θcos2θ\sin^{2}\theta\cos^{-2}\theta.
  4. Rewrite as tan(θ)\tan(\theta): Recognize that sin2θcos2θ\sin^{2}\theta\cos^{-2}\theta is equivalent to (sin(θ)cos(θ))2\left(\frac{\sin(\theta)}{\cos(\theta)}\right)^2.
  5. Conclude final result: Recall that sin(θ)/cos(θ)\sin(\theta)/\cos(\theta) is the definition of tan(θ)\tan(\theta), so we can rewrite the expression as tan2θ\tan^{2}\theta.
  6. Conclude final result: Recall that sin(θ)/cos(θ)\sin(\theta)/\cos(\theta) is the definition of tan(θ)\tan(\theta), so we can rewrite the expression as tan2θ\tan^{2}\theta.Conclude that sin2θsec2θ\sin^{2}\theta \cdot \sec^{2}\theta simplifies to tan2θ\tan^{2}\theta.

More problems from Simplify expressions using trigonometric identities