Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(tan^(2)theta)/(sec^(2)theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinetan2θsec2θ \frac{\tan ^{2} \theta}{\sec ^{2} \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinetan2θsec2θ \frac{\tan ^{2} \theta}{\sec ^{2} \theta} \newlineAnswer:
  1. Express tan and sec: Express tan(θ)\tan(\theta) and sec(θ)\sec(\theta) in terms of sine and cosine.\newlinetan(θ)\tan(\theta) is the ratio of sin(θ)\sin(\theta) to cos(θ)\cos(\theta), so tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.\newlinesec(θ)\sec(\theta) is the reciprocal of cos(θ)\cos(\theta), so sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}.
  2. Write tan2θ\tan^2\theta: Write tan2θ\tan^2\theta and sec2θ\sec^2\theta using the expressions from Step 11.\newlinetan2θ=(sin(θ)cos(θ))2\tan^2\theta = \left(\frac{\sin(\theta)}{\cos(\theta)}\right)^2\newlinesec2θ=(1cos(θ))2\sec^2\theta = \left(\frac{1}{\cos(\theta)}\right)^2
  3. Substitute expressions: Substitute the expressions from Step 22 into the given expression. \newlinetan2θsec2θ=(sin(θ)cos(θ))2(1cos(θ))2\frac{\tan^{2}\theta}{\sec^{2}\theta} = \frac{(\frac{\sin(\theta)}{\cos(\theta)})^2}{(\frac{1}{\cos(\theta)})^2}
  4. Simplify the expression: Simplify the expression by canceling out common terms. The cos(θ)\cos(\theta) in the denominator of tan2(θ)\tan^{2}(\theta) and the cos(θ)\cos(\theta) in the numerator of sec2(θ)\sec^{2}(\theta) will cancel out. This leaves us with (sin(θ))2(\sin(\theta))^2.
  5. Recognize sin2θ\sin^2\theta: Recognize that (sin(θ))2(\sin(\theta))^2 is simply sin2θ\sin^2\theta. So, the simplified expression is sin2θ\sin^2\theta.

More problems from Simplify expressions using trigonometric identities