Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

tan^(2)theta*csc^(2)theta
Answer:

theta

Simplify to a single trig function with no denominator.\newlinetan2θcsc2θ \tan ^{2} \theta \cdot \csc ^{2} \theta \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinetan2θcsc2θ \tan ^{2} \theta \cdot \csc ^{2} \theta \newlineAnswer:
  1. Express tan\tan and csc\csc: Express tan(θ)\tan(\theta) and csc(θ)\csc(\theta) in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta).\newlinetan(θ)\tan(\theta) is sin(θ)cos(θ)\frac{\sin(\theta)}{\cos(\theta)} and csc(θ)\csc(\theta) is 1sin(θ)\frac{1}{\sin(\theta)}.
  2. Write tan2\tan^2 and csc2\csc^2: Write tan2θ\tan^2\theta and csc2θ\csc^2\theta using the expressions from Step 11.\newlinetan2θ\tan^2\theta becomes (sin(θ)/cos(θ))2(\sin(\theta)/\cos(\theta))^2 and csc2θ\csc^2\theta becomes (1/sin(θ))2(1/\sin(\theta))^2.
  3. Multiply the expressions: Multiply the expressions from Step 22.\newline(sin(θ)cos(θ))2×(1sin(θ))2(\frac{\sin(\theta)}{\cos(\theta)})^2 \times (\frac{1}{\sin(\theta)})^2 simplifies to (sin2(θ)cos2(θ))×(1sin2(θ))(\frac{\sin^2(\theta)}{\cos^2(\theta)}) \times (\frac{1}{\sin^2(\theta)}).
  4. Simplify the expression: Simplify the expression by canceling out sin2(θ)\sin^2(\theta) in the numerator and denominator.sin2(θ)cos2(θ)×1sin2(θ)\frac{\sin^2(\theta)}{\cos^2(\theta)} \times \frac{1}{\sin^2(\theta)} simplifies to 1cos2(θ)\frac{1}{\cos^2(\theta)}.
  5. Recognize the definition: Recognize that 1cos2(θ)\frac{1}{\cos^2(\theta)} is the definition of sec2(θ)\sec^2(\theta). Therefore, the simplified expression is sec2(θ)\sec^2(\theta).

More problems from Simplify expressions using trigonometric identities