Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(cot^(2)theta)/(csc^(2)theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecot2θcsc2θ \frac{\cot ^{2} \theta}{\csc ^{2} \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecot2θcsc2θ \frac{\cot ^{2} \theta}{\csc ^{2} \theta} \newlineAnswer:
  1. Express cot(θ)\cot(\theta): Express cot(θ)\cot(\theta) and csc(θ)\csc(\theta) in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta) as cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} and csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}.
  2. Substitute cot(θ)\cot(\theta): Substitute cot(θ)\cot(\theta) and csc(θ)\csc(\theta) in the given expression with their respective expressions in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta) to get (cos(θ)sin(θ))2/(1sin(θ))2\left(\frac{\cos(\theta)}{\sin(\theta)}\right)^2 / \left(\frac{1}{\sin(\theta)}\right)^2.
  3. Simplify the expression: Simplify the expression by multiplying the numerator and the denominator by sin(θ)2\sin(\theta)^2 to get cos(θ)2sin(θ)2sin(θ)21\frac{\cos(\theta)^2}{\sin(\theta)^2} \cdot \frac{\sin(\theta)^2}{1}.
  4. formatted text

More problems from Simplify expressions using trigonometric identities