Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(cot theta)/(cos theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecotθcosθ \frac{\cot \theta}{\cos \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecotθcosθ \frac{\cot \theta}{\cos \theta} \newlineAnswer:
  1. Express cot(θ)\cot(\theta): Express cot(θ)\cot(\theta) in terms of cos(θ)\cos(\theta) and sin(θ)\sin(\theta) as cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}.
  2. Substitute cot(θ)\cot(\theta): Substitute cot(θ)\cot(\theta) with cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)} in the given expression to get cos(θ)sin(θ)cos(θ)\frac{\frac{\cos(\theta)}{\sin(\theta)}}{\cos(\theta)}.
  3. Simplify the expression: Simplify the expression by dividing cos(θ)\cos(\theta) by cos(θ)\cos(\theta), which results in 1sin(θ)\frac{1}{\sin(\theta)}.
  4. Recognize the definition: Recognize that 1sin(θ)\frac{1}{\sin(\theta)} is the definition of csc(θ)\csc(\theta), so the expression simplifies to csc(θ)\csc(\theta).

More problems from Simplify expressions using trigonometric identities