Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

sin^(2)theta*cot^(2)theta
Answer:

theta

Simplify to a single trig function with no denominator.\newlinesin2θcot2θ \sin ^{2} \theta \cdot \cot ^{2} \theta \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinesin2θcot2θ \sin ^{2} \theta \cdot \cot ^{2} \theta \newlineAnswer:
  1. Express cot(θ)\cot(\theta): Express cot(θ)\cot(\theta) in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta) as cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}.
  2. Substitute cot(θ)\cot(\theta): Substitute cot(θ)\cot(\theta) with cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)} in the given expression to get sin2θ(cos(θ)sin(θ))2\sin^{2}\theta \cdot \left(\frac{\cos(\theta)}{\sin(\theta)}\right)^{2}.
  3. Simplify the expression: Simplify the expression by squaring the cot(θ)\cot(\theta) term to get sin2θ×(cos2θ/sin2θ)\sin^{2}\theta \times (\cos^{2}\theta/\sin^{2}\theta).
  4. Cancel out terms: Cancel out the sin2θ\sin^{2}\theta in the numerator with one of the sin2θ\sin^{2}\theta in the denominator to get cos2θ\cos^{2}\theta.
  5. Recognize simplified form: Recognize that cos2(θ)\cos^2(\theta) is already a single trigonometric function with no denominator, which is the simplified form of the original expression.

More problems from Simplify expressions using trigonometric identities