Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(cos theta)/(sec theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecosθsecθ \frac{\cos \theta}{\sec \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecosθsecθ \frac{\cos \theta}{\sec \theta} \newlineAnswer:
  1. Express sec(θ)\sec(\theta): Express sec(θ)\sec(\theta) in terms of cos(θ)\cos(\theta) as sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}.
  2. Substitute sec(θ)\sec(\theta): Substitute sec(θ)\sec(\theta) with 1cos(θ)\frac{1}{\cos(\theta)} in the given expression to get cos(θ)1cos(θ)\frac{\cos(\theta)}{\frac{1}{\cos(\theta)}}.
  3. Simplify expression: Simplify cos(θ)1cos(θ)\frac{\cos(\theta)}{\frac{1}{\cos(\theta)}} as cos(θ)(cos(θ)1)\cos(\theta) \cdot \left(\frac{\cos(\theta)}{1}\right) to get cos2(θ)\cos^2(\theta).

More problems from Simplify expressions using trigonometric identities