Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(sin theta)/(tan theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinesinθtanθ \frac{\sin \theta}{\tan \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinesinθtanθ \frac{\sin \theta}{\tan \theta} \newlineAnswer:
  1. Express tan(θ)\tan(\theta): Express tan(θ)\tan(\theta) in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta) as tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.
  2. Substitute tan(θ)\tan(\theta): Substitute tan(θ)\tan(\theta) with sin(θ)cos(θ)\frac{\sin(\theta)}{\cos(\theta)} in the given expression to get sin(θ)sin(θ)/cos(θ)\frac{\sin(\theta)}{\sin(\theta)/\cos(\theta)}.
  3. Simplify expression: Simplify (sin(θ))/(sin(θ)/cos(θ))(\sin(\theta))/(\sin(\theta)/\cos(\theta)) by multiplying the numerator and denominator by cos(θ)\cos(\theta) to get (sin(θ)cos(θ))/sin(θ)(\sin(\theta) \cdot \cos(\theta))/\sin(\theta).
  4. Cancel common terms: Cancel out the common sin(θ)\sin(\theta) terms in the numerator and denominator to get cos(θ)\cos(\theta).

More problems from Simplify expressions using trigonometric identities