Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(cot theta)/(csc theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecotθcscθ \frac{\cot \theta}{\csc \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecotθcscθ \frac{\cot \theta}{\csc \theta} \newlineAnswer:
  1. Express cot(θ)\cot(\theta): Express cot(θ)\cot(\theta) in terms of cos(θ)\cos(\theta) and sin(θ)\sin(\theta) as cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}.
  2. Express csc(θ)\csc(\theta): Express csc(θ)\csc(\theta) in terms of sin(θ)\sin(\theta) as csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}.
  3. Substitute csc(θ)\csc(\theta): Substitute csc(θ)\csc(\theta) with 1sin(θ)\frac{1}{\sin(\theta)} in the given expression to get cot(θ)1sin(θ)\frac{\cot(\theta)}{\frac{1}{\sin(\theta)}}.
  4. Simplify expression: Simplify cot(θ)1sin(θ)\frac{\cot(\theta)}{\frac{1}{\sin(\theta)}} as cos(θ)sin(θ)sin(θ)1\frac{\cos(\theta)}{\sin(\theta)} \cdot \frac{\sin(\theta)}{1} to get cos(θ)\cos(\theta).

More problems from Simplify expressions using trigonometric identities