Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(csc theta)/(sec theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecscθsecθ \frac{\csc \theta}{\sec \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecscθsecθ \frac{\csc \theta}{\sec \theta} \newlineAnswer:
  1. Express in terms of sin/cos: Express csc(θ)csc(\theta) and sec(θ)sec(\theta) in terms of sin(θ)\sin(\theta) and cos(θ)\cos(\theta) respectively, as csc(θ)=1sin(θ)csc(\theta) = \frac{1}{\sin(\theta)} and sec(θ)=1cos(θ)sec(\theta) = \frac{1}{\cos(\theta)}.
  2. Substitute in given expression: Substitute csc(θ)\csc(\theta) with 1sin(θ)\frac{1}{\sin(\theta)} and sec(θ)\sec(\theta) with 1cos(θ)\frac{1}{\cos(\theta)} in the given expression to get 1sin(θ)/1cos(θ)\frac{1}{\sin(\theta)}/\frac{1}{\cos(\theta)}.
  3. Simplify by multiplying: Simplify (1/sin(θ))/(1/cos(θ))(1/\sin(\theta))/(1/\cos(\theta)) by multiplying the numerator by the reciprocal of the denominator to get (1/sin(θ))(cos(θ)/1)(1/\sin(\theta))*(\cos(\theta)/1).
  4. Simplify the expression: Simplify the expression (1sin(θ))(cos(θ)1)(\frac{1}{\sin(\theta)})\cdot(\frac{\cos(\theta)}{1}) to get cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)}.
  5. Recognize the definition: Recognize that cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)} is the definition of cot(θ)\cot(\theta), so the expression simplifies to cot(θ)\cot(\theta).

More problems from Simplify expressions using trigonometric identities