Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

csc^(2)theta*sin^(2)theta
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecsc2θsin2θ \csc ^{2} \theta \cdot \sin ^{2} \theta \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecsc2θsin2θ \csc ^{2} \theta \cdot \sin ^{2} \theta \newlineAnswer:
  1. Understand Trigonometric Identities: Understand the trigonometric identities involved.\newlineThe cosecant function is the reciprocal of the sine function, so csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}. Therefore, csc2(θ)=1sin2(θ)\csc^{2}(\theta) = \frac{1}{\sin^{2}(\theta)}.
  2. Multiply by sin2(θ)\sin^{2}(\theta): Multiply csc2(θ)\csc^{2}(\theta) by sin2(θ)\sin^{2}(\theta). Since csc2(θ)=1sin2(θ)\csc^{2}(\theta) = \frac{1}{\sin^{2}(\theta)}, we have: csc2(θ)×sin2(θ)=(1sin2(θ))×sin2(θ)\csc^{2}(\theta) \times \sin^{2}(\theta) = \left(\frac{1}{\sin^{2}(\theta)}\right) \times \sin^{2}(\theta).
  3. Simplify the Expression: Simplify the expression.\newlineThe sin2(θ)\sin^{2}(\theta) in the numerator and denominator cancel each other out, leaving us with:\newline1sin2(θ)×sin2(θ)=1\frac{1}{\sin^{2}(\theta)} \times \sin^{2}(\theta) = 1.

More problems from Simplify radical expressions with variables II