Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to a single trig function with no denominator.

(cos theta)/(cot theta)
Answer:

theta

Simplify to a single trig function with no denominator.\newlinecosθcotθ \frac{\cos \theta}{\cot \theta} \newlineAnswer:

Full solution

Q. Simplify to a single trig function with no denominator.\newlinecosθcotθ \frac{\cos \theta}{\cot \theta} \newlineAnswer:
  1. Express cot(θ)\cot(\theta): Express cot(θ)\cot(\theta) in terms of cos(θ)\cos(\theta) and sin(θ)\sin(\theta) as cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}.
  2. Substitute cot(θ)\cot(\theta): Substitute cot(θ)\cot(\theta) with cos(θ)sin(θ)\frac{\cos(\theta)}{\sin(\theta)} in the given expression to get cos(θ)cos(θ)/sin(θ)\frac{\cos(\theta)}{\cos(\theta)/\sin(\theta)}.
  3. Simplify expression: Simplify (cos(θ))/(cos(θ)/sin(θ))(\cos(\theta))/(\cos(\theta)/\sin(\theta)) by multiplying by the reciprocal of the denominator to get (cos(θ)sin(θ))/cos(θ)(\cos(\theta) \cdot \sin(\theta))/\cos(\theta).
  4. Cancel common factor: Cancel out the common factor of cos(θ)\cos(\theta) in the numerator and denominator to get sin(θ)\sin(\theta).

More problems from Simplify expressions using trigonometric identities