Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplify this: cos1(x)(1x2)1log(1+(sin(2x1x2)π))dx\int \frac{\cos^{-1}(x) \cdot \sqrt{(1-x^2)^{-1}}}{\log \left( 1+ \left( \frac{\sin (2x\sqrt{1-x^2})}{\pi} \right) \right)} \, dx

Full solution

Q. simplify this: cos1(x)(1x2)1log(1+(sin(2x1x2)π))dx\int \frac{\cos^{-1}(x) \cdot \sqrt{(1-x^2)^{-1}}}{\log \left( 1+ \left( \frac{\sin (2x\sqrt{1-x^2})}{\pi} \right) \right)} \, dx
  1. Analyze the integral: Analyze the integral expression.\newlineWe have the integral expression:\newlinecos1(x)(1x2)1log(1+(sin(2x1x2)π))dx\int \frac{\cos^{-1}(x) \cdot \sqrt{(1-x^2)^{-1}}}{\log \left( 1+ \left( \frac{\sin (2x\sqrt{1-x^2})}{\pi} \right) \right)} \, dx\newlineWe need to simplify this expression. First, let's look at the square root in the numerator.
  2. Simplify square root: Simplify the square root in the numerator.\newlineThe square root of the inverse is the same as the square root of the reciprocal, so we have:\newline(1x2)1=11x2\sqrt{(1-x^2)^{-1}} = \frac{1}{\sqrt{1-x^2}}\newlineNow, the integral expression becomes:\newlinecos1(x)1x2log(1+(sin(2x1x2)π))dx\int \frac{\cos^{-1}(x)}{\sqrt{1-x^2} \cdot \log \left( 1+ \left( \frac{\sin (2x\sqrt{1-x^2})}{\pi} \right) \right)} \, dx
  3. Recognize derivative: Recognize the derivative of the inverse cosine function.\newlineThe derivative of cos1(x)\cos^{-1}(x) is 11x2-\frac{1}{\sqrt{1-x^2}}. This is similar to the expression we have in the numerator. However, we have a positive sign instead of a negative sign, which we need to account for.
  4. Adjust integral: Adjust the integral to match the derivative of the inverse cosine function.\newlineTo make the numerator match the derivative of cos1(x)\cos^{-1}(x), we can multiply and divide by 1-1:\newline1cos1(x)1x2log(1+(sin(2x1x2)π))dx\int \frac{-1 \cdot \cos^{-1}(x)}{-\sqrt{1-x^2} \cdot \log \left( 1+ \left( \frac{\sin (2x\sqrt{1-x^2})}{\pi} \right) \right)} \, dx\newlineNow, the numerator is the derivative of cos1(x)\cos^{-1}(x) times 1-1.
  5. Look for substitution: Look for a substitution.\newlineWe can let u=cos1(x)u = \cos^{-1}(x), which implies x=cos(u)x = \cos(u). Then, dx=sin(u)dudx = -\sin(u) \, du, and we have 1x2=sin(u)\sqrt{1-x^2} = \sin(u).
  6. Perform the substitution: Perform the substitution.\newlineSubstituting uu and dxdx into the integral, we get:\newlineusin(u)log(1+(sin(2cos(u)sin(u))π))(sin(u)du)\int \frac{-u}{-\sin(u) \cdot \log \left( 1+ \left( \frac{\sin (2\cos(u)\sin(u))}{\pi} \right) \right)} \cdot (-\sin(u) \, du)\newlineThis simplifies to:\newlineulog(1+(sin(2cos(u)sin(u))π))du\int \frac{u}{\log \left( 1+ \left( \frac{\sin (2\cos(u)\sin(u))}{\pi} \right) \right)} \, du
  7. Simplify sine argument: Simplify the argument of the sine function in the denominator.\newlineThe argument of the sine function inside the logarithm is 2cos(u)sin(u)2\cos(u)\sin(u), which is equivalent to sin(2u)\sin(2u) due to the double-angle formula for sine.
  8. Substitute double-angle formula: Substitute the double-angle formula into the integral.\newlineThe integral now becomes:\newlineulog(1+(sin(2u)π))du\int \frac{u}{\log \left( 1+ \left( \frac{\sin(2u)}{\pi} \right) \right)} \, du
  9. Recognize complexity: Recognize the complexity of the integral.\newlineAt this point, we have an integral that involves a logarithm in the denominator with a non-trivial argument. This integral does not have a standard form and cannot be easily simplified using elementary functions. It may require special functions or numerical methods to solve.
  10. Conclude integral: Conclude that the integral cannot be simplified further in terms of elementary functions.\newlineThe integral:\newlineulog(1+(sin(2u)π))du\int \frac{u}{\log \left( 1+ \left( \frac{\sin(2u)}{\pi} \right) \right)} \, du\newlinedoes not simplify to a form expressible in terms of elementary functions. Therefore, we cannot provide a simplified expression for the original integral.

More problems from Multiplication with rational exponents