Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(16x^(-12)y^(-8))^(-(5)/(4))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(16x12y8)54 \left(16 x^{-12} y^{-8}\right)^{-\frac{5}{4}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(16x12y8)54 \left(16 x^{-12} y^{-8}\right)^{-\frac{5}{4}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression.\newline(16x12y8)54(16x^{-12}y^{-8})^{-\frac{5}{4}}\newline=1(16x12y8)54= \frac{1}{(16x^{-12}y^{-8})^{\frac{5}{4}}}
  2. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to each part of the expression inside the parentheses.\newline1(1654)(x1254)(y854)\frac{1}{(16^{\frac{5}{4}}) * (x^{-12 * \frac{5}{4}}) * (y^{-8 * \frac{5}{4}})}
  3. Calculate new exponents: Calculate the new exponents.\newlineNow we need to multiply the exponents by 54\frac{5}{4}.\newline1(1654)(x15)(y10)\frac{1}{(16^{\frac{5}{4}}) \cdot (x^{-15}) \cdot (y^{-10})}
  4. Simplify base 1616: Simplify the base 1616 with the exponent 54\frac{5}{4}. 1616 is 22 to the power of 44, so we can rewrite 165416^{\frac{5}{4}} as (24)54(2^4)^{\frac{5}{4}}. 1((24)54x15y10)=1(2454x15y10)=1(25x15y10)=1(32x15y10)\frac{1}{((2^4)^{\frac{5}{4}} * x^{-15} * y^{-10})} = \frac{1}{(2^{4*\frac{5}{4}} * x^{-15} * y^{-10})} = \frac{1}{(2^5 * x^{-15} * y^{-10})} = \frac{1}{(32 * x^{-15} * y^{-10})}
  5. Apply negative exponent rule to xx and yy: Apply the negative exponent rule to xx and yy. We will apply the negative exponent rule to x15x^{-15} and y10y^{-10} to make the exponents positive. 132×(1x15)×(1y10)\frac{1}{32 \times \left(\frac{1}{x^{15}}\right) \times \left(\frac{1}{y^{10}}\right)}
  6. Simplify the expression: Simplify the expression.\newlineNow we can simplify the expression by multiplying the denominators.\newline132×1x15×1y10\frac{1}{32} \times \frac{1}{x^{15}} \times \frac{1}{y^{10}}\newline= 132x15×y10\frac{1}{\frac{32}{x^{15} \times y^{10}}}\newline= x15×y1032\frac{x^{15} \times y^{10}}{32}

More problems from Multiplication with rational exponents