Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(81x^(16)y^(-12))^(-(5)/(4))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(81x16y12)54 \left(81 x^{16} y^{-12}\right)^{-\frac{5}{4}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(81x16y12)54 \left(81 x^{16} y^{-12}\right)^{-\frac{5}{4}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression (81x16y12)54(81x^{16}y^{-12})^{-\frac{5}{4}}.
  2. Distribute Exponents: Distribute the exponent to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. In this case, we have a product of three terms inside the parentheses, each of which will be raised to the power of 54-\frac{5}{4}.\newline(81x16y12)54=8154×x16(54)×y12(54)(81x^{16}y^{-12})^{-\frac{5}{4}} = 81^{-\frac{5}{4}} \times x^{16\cdot(-\frac{5}{4})} \times y^{-12\cdot(-\frac{5}{4})}
  3. Simplify Each Term: Simplify each term separately.\newlineNow we simplify each term by multiplying the exponents.\newline81(5)/(4)=1815/481^{-(5)/(4)} = \frac{1}{81^{5/4}}\newlinex16((5)/(4))=x20x^{16*(-(5)/(4))} = x^{-20}\newliney12((5)/(4))=y15y^{-12*(-(5)/(4))} = y^{15}
  4. Convert Negative Exponents: Convert negative exponents to positive exponents.\newlineWe already have y15y^{15} with a positive exponent. For x20x^{-20}, we use the rule that an=1ana^{-n} = \frac{1}{a^n} to convert the negative exponent to a positive one.\newlinex20=1x20x^{-20} = \frac{1}{x^{20}}
  5. Calculate 815/481^{5/4}: Calculate 815/481^{5/4}. To calculate 815/481^{5/4}, we first find the fourth root of 8181, which is 33, because 34=813^4 = 81. Then we raise 33 to the power of 55. 815/4=(34)5/4=35=24381^{5/4} = (3^4)^{5/4} = 3^5 = 243
  6. Write Final Expression: Write the final expression using only positive exponents.\newlineWe combine the results from the previous steps to write the final expression.\newline18154×1x20×y15=1243×1x20×y15\frac{1}{81^{\frac{5}{4}}} \times \frac{1}{x^{20}} \times y^{15} = \frac{1}{243} \times \frac{1}{x^{20}} \times y^{15}

More problems from Multiplication with rational exponents