Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(81x^(-6)y^(2))^((1)/(2))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(81x6y2)12 \left(81 x^{-6} y^{2}\right)^{\frac{1}{2}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(81x6y2)12 \left(81 x^{-6} y^{2}\right)^{\frac{1}{2}} \newlineAnswer:
  1. Apply Exponent Rule: Apply the exponent rule (am)n=amn(a^m)^n = a^{m*n} to the given expression.\newline(81x6y2)12=8112x612y212(81x^{-6}y^{2})^{\frac{1}{2}} = 81^{\frac{1}{2}} * x^{-6*\frac{1}{2}} * y^{2*\frac{1}{2}}
  2. Simplify Parts: Simplify each part of the expression separately.\newline8112=981^{\frac{1}{2}} = 9 because 92=819^2 = 81\newlinex6(12)=x3x^{-6\left(\frac{1}{2}\right)} = x^{-3} because 6(12)=3-6\left(\frac{1}{2}\right) = -3\newliney2(12)=y1=yy^{2\left(\frac{1}{2}\right)} = y^1 = y because 2(12)=12\left(\frac{1}{2}\right) = 1
  3. Rewrite with Positive Exponents: Rewrite the expression with positive exponents by moving the term with a negative exponent to the denominator.\newline9×x3×y=9yx39 \times x^{-3} \times y = \frac{9y}{x^3} because x3=1x3x^{-3} = \frac{1}{x^3}
  4. Combine Simplified Parts: Combine the simplified parts to write the final answer.\newlineThe expression (81x6y2)12(81x^{-6}y^{2})^{\frac{1}{2}} simplifies to 9yx3\frac{9y}{x^3}.

More problems from Multiplication with rational exponents