Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(64x^(-3)y^(-15))^((4)/(3))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(64x3y15)43 \left(64 x^{-3} y^{-15}\right)^{\frac{4}{3}} \newlineAnswer:\newline

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(64x3y15)43 \left(64 x^{-3} y^{-15}\right)^{\frac{4}{3}} \newlineAnswer:\newline
  1. Apply Power to Factors: Apply the power to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. In this case, we have a fractional exponent (4/3)(4/3), which we will apply to each factor inside the parentheses.\newline(64x3y15)(4)/(3)=64(4)/(3)x3(4)/(3)y15(4)/(3)(64x^{-3}y^{-15})^{(4)/(3)} = 64^{(4)/(3)} * x^{-3*(4)/(3)} * y^{-15*(4)/(3)}
  2. Simplify Each Factor: Simplify each factor separately.\newlineFirst, we simplify 64(4)/(3)64^{(4)/(3)}. Since 6464 is 434^3, we can rewrite this as (43)(4)/(3)(4^3)^{(4)/(3)}.\newline64(4)/(3)=(43)(4)/(3)=43(4)/(3)=44=25664^{(4)/(3)} = (4^3)^{(4)/(3)} = 4^{3*(4)/(3)} = 4^4 = 256\newlineNext, we simplify the xx and yy terms by multiplying the exponents.\newlinex(3(4)/(3))=x4x^{(-3*(4)/(3))} = x^{-4}\newliney(15(4)/(3))=y20y^{(-15*(4)/(3))} = y^{-20}
  3. Rewrite with Positive Exponents: Rewrite the expression with positive exponents.\newlineTo convert negative exponents to positive, we take the reciprocal of the base raised to the positive of the negative exponent.\newlinex4x^{-4} becomes 1x4\frac{1}{x^4}\newliney20y^{-20} becomes 1y20\frac{1}{y^{20}}
  4. Combine Simplified Factors: Combine the simplified factors.\newlineNow we combine the simplified factors to get the final expression.\newline256×(1x4)×(1y20)256 \times \left(\frac{1}{x^4}\right) \times \left(\frac{1}{y^{20}}\right)
  5. Write Final Answer: Write the final answer.\newlineThe final simplified expression with positive exponents is:\newline256x4y20\frac{256}{x^4y^{20}}

More problems from Multiplication with rational exponents