Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(32x^(-20)y^(-5))^(-(2)/(5))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(32x20y5)25 \left(32 x^{-20} y^{-5}\right)^{-\frac{2}{5}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(32x20y5)25 \left(32 x^{-20} y^{-5}\right)^{-\frac{2}{5}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the expression (32x20y5)25(32x^{-20}y^{-5})^{-\frac{2}{5}}.
  2. Distribute exponent to each factor: Distribute the exponent to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. In this case, we have a product inside the parentheses, so we will distribute the exponent to each factor.\newline(32x(20)y(5))((2)/(5))=32((2)/(5))×x(20×((2)/(5)))×y(5×((2)/(5)))(32x^{(-20)}y^{(-5)})^{(-(2)/(5))} = 32^{(-(2)/(5))} \times x^{(-20 \times (-(2)/(5)))} \times y^{(-5 \times (-(2)/(5)))}
  3. Simplify each factor separately: Simplify each factor separately.\newlineNow we simplify each factor by applying the exponent to each base.\newline32(2)/(5)=1322/532^{-(2)/(5)} = \frac{1}{32^{2/5}}\newlinex(20((2)/(5)))=x20(2/5)=x8x^{(-20 \cdot (-(2)/(5)))} = x^{20 \cdot (2/5)} = x^{8}\newliney(5((2)/(5)))=y5(2/5)=y2y^{(-5 \cdot (-(2)/(5)))} = y^{5 \cdot (2/5)} = y^{2}
  4. Calculate fifth root and square: Calculate the fifth root of 3232 and then square it.\newline32(2/5)32^{(2/5)} means the fifth root of 3232 squared. The fifth root of 3232 is 22, because 25=322^5 = 32.\newline(25)(2/5)=2(5(2/5))=22=4(2^5)^{(2/5)} = 2^{(5*(2/5))} = 2^2 = 4
  5. Combine simplified factors: Combine the simplified factors.\newlineNow we combine the simplified factors to get the final expression with positive exponents.\newline13225×x8×y2=14×x8×y2\frac{1}{32^{\frac{2}{5}}} \times x^{8} \times y^{2} = \frac{1}{4} \times x^{8} \times y^{2}
  6. Write final simplified expression: Write the final simplified expression.\newlineThe final expression is:\newline14x8y2\frac{1}{4x^8y^2}

More problems from Multiplication with rational exponents