Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(64x^(3)y^(-18))^(-(5)/(3))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(64x3y18)53 \left(64 x^{3} y^{-18}\right)^{-\frac{5}{3}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(64x3y18)53 \left(64 x^{3} y^{-18}\right)^{-\frac{5}{3}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the expression (64x3y18)53(64x^{3}y^{-18})^{-\frac{5}{3}}.
  2. Distribute Exponent to Factors: Distribute the exponent to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. Here, we have a product inside the parentheses, so we distribute the exponent to each factor.\newline(64x3y18)(5)/(3)=64(5)/(3)×x3×((5)/(3))×y18×((5)/(3))(64x^{3}y^{-18})^{-(5)/(3)} = 64^{-(5)/(3)} \times x^{3\times(-(5)/(3))} \times y^{-18\times(-(5)/(3))}
  3. Simplify Each Factor: Simplify each factor separately.\newlineNow we simplify each factor by multiplying the exponents.\newline64(5)/(3)=1645/364^{-(5)/(3)} = \frac{1}{64^{5/3}}\newlinex3((5)/(3))=x5x^{3*(-(5)/(3))} = x^{-5}\newliney18((5)/(3))=y30y^{-18*(-(5)/(3))} = y^{30}
  4. Simplify 645364^{\frac{5}{3}} Term: Simplify the 645364^{\frac{5}{3}} term.\newline6464 is 434^3, so we can rewrite 645364^{\frac{5}{3}} as (43)53(4^3)^{\frac{5}{3}}. When raising a power to a power, we multiply the exponents.\newline(43)53=43(53)=45(4^3)^{\frac{5}{3}} = 4^{3*(\frac{5}{3})} = 4^5
  5. Calculate 454^5: Calculate 454^5.\newline45=4×4×4×4×4=10244^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024
  6. Substitute 454^5: Substitute 454^5 back into the expression.\newlineNow we substitute 10241024 for 454^5 in the expression from Step 33.\newline1/(645/3)=1/10241/(64^{5/3}) = 1/1024
  7. Combine Simplified Factors: Combine all the simplified factors.\newlineNow we combine all the simplified factors to get the final expression with positive exponents.\newline11024×x5×y30\frac{1}{1024} \times x^{-5} \times y^{30}
  8. Rewrite x5x^{-5}: Rewrite x5x^{-5} with a positive exponent.\newlineTo write x5x^{-5} with a positive exponent, we use the rule an=1ana^{-n} = \frac{1}{a^n}.\newlinex5=1x5x^{-5} = \frac{1}{x^5}
  9. Combine into Single Fraction: Combine all terms into a single fraction.\newlineNow we combine all terms into a single fraction to get the final answer.\newline11024×x5×y30\frac{1}{1024 \times x^5} \times y^{30}

More problems from Multiplication with rational exponents