Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(32x^(20)y^(-25))^(-(2)/(5))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(32x20y25)25 \left(32 x^{20} y^{-25}\right)^{-\frac{2}{5}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(32x20y25)25 \left(32 x^{20} y^{-25}\right)^{-\frac{2}{5}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression (32x20y25)25(32x^{20}y^{-25})^{-\frac{2}{5}}.
  2. Distribute Exponent to Factors: Distribute the exponent to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. In this case, we have a product inside the parentheses, so we will distribute the exponent to each factor.\newline(32x20y25)(2)/(5)=32(2)/(5)×x20((2)/(5))×y25((2)/(5))(32x^{20}y^{-25})^{-(2)/(5)} = 32^{-(2)/(5)} \times x^{20\cdot(-(2)/(5))} \times y^{-25\cdot(-(2)/(5))}
  3. Simplify Each Factor: Simplify each factor separately.\newlineNow we simplify each factor by multiplying the exponents.\newline32(2)/(5)=1/(322/5)32^{-(2)/(5)} = 1/(32^{2/5})\newlinex20((2)/(5))=x8=1/(x8)x^{20*(-(2)/(5))} = x^{-8} = 1/(x^8)\newliney25((2)/(5))=y10y^{-25*(-(2)/(5))} = y^{10}
  4. Calculate Fifth Root of 3232: Calculate the fifth root of 3232 and raise it to the power of 22.321/532^{1/5} is the fifth root of 3232, which is 22 because 25=322^5 = 32. Then we raise 22 to the power of 22 to get 44.322/5=(321/5)2=22=432^{2/5} = (32^{1/5})^2 = 2^2 = 4
  5. Combine Simplified Factors: Combine all the simplified factors.\newlineNow we combine all the factors to get the final expression with positive exponents.\newline13225×1x8×y10=14×x8×y10\frac{1}{32^{\frac{2}{5}}} \times \frac{1}{x^8} \times y^{10} = \frac{1}{4 \times x^8} \times y^{10}
  6. Write Final Expression: Write the final simplified expression.\newlineThe final expression is:\newline14x8y10\frac{1}{4x^8} \cdot y^{10}

More problems from Multiplication with rational exponents