Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(32x^(25)y^(-40))^((4)/(5))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(32x25y40)45 \left(32 x^{25} y^{-40}\right)^{\frac{4}{5}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(32x25y40)45 \left(32 x^{25} y^{-40}\right)^{\frac{4}{5}} \newlineAnswer:
  1. Apply Power to Factors: Apply the power to each factor inside the parentheses.\newlineWhen raising a power to a power, you multiply the exponents. For the numerical base 3232, which is 252^5, we will apply the exponent (4/5)(4/5) to both the base and the exponents of xx and yy.\newline(32x25y40)(4)/(5)=(25)4/5x25(4/5)y40(4/5)(32x^{25}y^{-40})^{(4)/(5)} = (2^5)^{4/5} * x^{25*(4/5)} * y^{-40*(4/5)}
  2. Simplify Exponents: Simplify the exponents.\newlineNow we simplify the exponents by multiplying them.\newline(25)45=25(45)=24(2^5)^{\frac{4}{5}} = 2^{5*\left(\frac{4}{5}\right)} = 2^4\newlinex25(45)=x1005=x20x^{25*\left(\frac{4}{5}\right)} = x^{\frac{100}{5}} = x^{20}\newliney40(45)=y32y^{-40*\left(\frac{4}{5}\right)} = y^{-32}
  3. Rewrite with Positive Exponents: Rewrite the expression with positive exponents only.\newlineSince we want only positive exponents, we need to take the reciprocal of yy to change the negative exponent to a positive one.\newline24×x20×y32=24×x20×(1/y32)2^4 \times x^{20} \times y^{-32} = 2^4 \times x^{20} \times (1/y^{32})
  4. Calculate 242^4: Calculate the value of 242^4. \newline24=2×2×2×2=162^4 = 2 \times 2 \times 2 \times 2 = 16
  5. Combine for Final Answer: Combine all the parts to write the final answer.\newlineThe final simplified expression is:\newline16×x20×(1y32)16 \times x^{20} \times \left(\frac{1}{y^{32}}\right)

More problems from Multiplication with rational exponents