Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(9x^(8)y^(-12))^(-(1)/(2))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(9x8y12)12 \left(9 x^{8} y^{-12}\right)^{-\frac{1}{2}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(9x8y12)12 \left(9 x^{8} y^{-12}\right)^{-\frac{1}{2}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the expression (9x8y12)12(9x^{8}y^{-12})^{-\frac{1}{2}}.
  2. Rewrite with Positive Exponent: Rewrite the expression with a positive exponent by taking the reciprocal.\newline(9x8y12)(1)/(2)(9x^{8}y^{-12})^{-(1)/(2)} becomes 1(9x8y12)1/2\frac{1}{(9x^{8}y^{-12})^{1/2}}
  3. Apply Power of Power Rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^{m})^{n} = a^{m*n}. We will apply this rule to each part of the expression inside the parentheses.\newline1(912)(x812)(y1212)\frac{1}{(9^{\frac{1}{2}})(x^{8*\frac{1}{2}})(y^{-12*\frac{1}{2}})}
  4. Simplify Exponents: Simplify the exponents.\newlineCalculate the new exponents by multiplying the exponents.\newline1(912)(x4)(y6)\frac{1}{(9^{\frac{1}{2}})(x^{4})(y^{-6})}
  5. Simplify Square Root: Simplify the square root of 99. The square root of 99 is 33. 1(3)(x4)(y6)\frac{1}{(3)(x^{4})(y^{-6})}
  6. Rewrite Negative Exponent: Rewrite the negative exponent as a positive exponent in the denominator.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to y6y^{-6}.\newline1(3)(x4)(1y6)\frac{1}{(3)(x^{4})(\frac{1}{y^{6}})}
  7. Simplify Expression: Simplify the expression by multiplying the denominators.\newlineWhen we multiply fractions, we multiply the numerators and the denominators separately.\newline1(3)(x4)\frac{1}{(3)(x^{4})}(y6)*(y^{6})
  8. Combine Denominator: Combine the terms in the denominator.\newlineSince 33 and x4x^{4} are already in the denominator, we just need to multiply them by y6y^{6}.\newline1(3x4y6)\frac{1}{(3x^{4}y^{6})}

More problems from Multiplication with rational exponents