Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(49x^(2)y^(8))^(-(1)/(2))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(49x2y8)12 \left(49 x^{2} y^{8}\right)^{-\frac{1}{2}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(49x2y8)12 \left(49 x^{2} y^{8}\right)^{-\frac{1}{2}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression.\newline(49x2y8)12=1(49x2y8)12(49x^{2}y^{8})^{-\frac{1}{2}} = \frac{1}{(49x^{2}y^{8})^{\frac{1}{2}}}
  2. Simplify inside parentheses: Simplify the expression inside the parentheses.\newlineWe need to find the square root of each term inside the parentheses since the exponent is 12\frac{1}{2}.\newlineThe square root of 4949 is 77, the square root of x2x^2 is xx, and the square root of y8y^8 is y4y^4.\newline1((49x2y8)12)=1(7x1y4)\frac{1}{((49x^{2}y^{8})^{\frac{1}{2}})} = \frac{1}{(7x^{1}y^{4})}
  3. Write final expression: Write the final expression using only positive exponents.\newlineSince we have already applied the negative exponent as a reciprocal in step 11, the final expression is already with positive exponents.\newlineThe final simplified expression is 17xy4\frac{1}{7x y^{4}}.

More problems from Evaluate integers raised to rational exponents