Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(27x^(-9)y^(18))^(-(5)/(3))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(27x9y18)53 \left(27 x^{-9} y^{18}\right)^{-\frac{5}{3}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(27x9y18)53 \left(27 x^{-9} y^{18}\right)^{-\frac{5}{3}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression (27x9y18)53(27x^{-9}y^{18})^{-\frac{5}{3}}.
  2. Rewrite with positive exponents: Rewrite the expression with positive exponents by taking the reciprocal.\newlineTaking the reciprocal of the base and making the exponent positive, we get:\newline(1/(27x(9)y(18)))(5/3)(1/(27x^{(-9)}y^{(18)}))^{(5/3)}
  3. Apply power rule: Apply the power rule to the expression inside the parentheses.\newlineThe power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to each part of the expression inside the parentheses.\newline(127)53(x9)53(y18)53(\frac{1}{27})^{\frac{5}{3}} * (x^{-9})^{\frac{5}{3}} * (y^{18})^{\frac{5}{3}}
  4. Simplify each part: Simplify each part of the expression separately.\newlineSimplify (127)53(\frac{1}{27})^{\frac{5}{3}}, (x9)53(x^{-9})^{\frac{5}{3}}, and (y18)53(y^{18})^{\frac{5}{3}} by multiplying the exponents.\newline(127)53=12753(\frac{1}{27})^{\frac{5}{3}} = \frac{1}{27^{\frac{5}{3}}}\newline(x9)53=x(9)(53)=x15(x^{-9})^{\frac{5}{3}} = x^{(-9)\cdot(\frac{5}{3})} = x^{-15}\newline(y18)53=y(18)(53)=y30(y^{18})^{\frac{5}{3}} = y^{(18)\cdot(\frac{5}{3})} = y^{30}
  5. Calculate 275/327^{5/3}: Calculate the value of 275/327^{5/3}. \newline2727 is 333^3, so we can rewrite 275/327^{5/3} as (33)5/3(3^3)^{5/3}. \newline(33)5/3=33(5/3)=35=243(3^3)^{5/3} = 3^{3*(5/3)} = 3^5 = 243\newlineTherefore, 1/(275/3)=1/2431/(27^{5/3}) = 1/243
  6. Combine simplified parts: Combine the simplified parts into one expression.\newlineCombine the results from the previous steps to get the final expression with positive exponents.\newline1243×x15×y30\frac{1}{243} \times x^{-15} \times y^{30}
  7. Rewrite x15x^{-15}: Rewrite x15x^{-15} with a positive exponent.\newlineTo rewrite x15x^{-15} with a positive exponent, we take the reciprocal of xx to the power of 1515.\newline1243×1x15×y30\frac{1}{243} \times \frac{1}{x^{15}} \times y^{30}
  8. Combine the fractions: Combine the fractions. Combine the fractions to get a single fraction. 1243x15y30\frac{1}{243x^{15}} \cdot y^{30}
  9. Write final expression: Write the final simplified expression.\newlineThe final simplified expression is:\newliney30/(243x15)y^{30} / (243x^{15})

More problems from Multiplication with rational exponents