Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(100x^(12)y^(-14))^(-(1)/(2))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(100x12y14)12 \left(100 x^{12} y^{-14}\right)^{-\frac{1}{2}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(100x12y14)12 \left(100 x^{12} y^{-14}\right)^{-\frac{1}{2}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression (100x12y14)12(100x^{12}y^{-14})^{-\frac{1}{2}}.
  2. Distribute Exponent to Factors: Distribute the exponent to each factor inside the parentheses.\newlineWhen an exponent is applied to a product, it is distributed to each factor. So, we will apply the exponent 12-\frac{1}{2} to 100100, x12x^{12}, and y14y^{-14} separately.\newline(100x12y14)12=10012×x12(12)×y14(12)(100x^{12}y^{-14})^{-\frac{1}{2}} = 100^{-\frac{1}{2}} \times x^{12\cdot(-\frac{1}{2})} \times y^{-14\cdot(-\frac{1}{2})}
  3. Simplify Each Part: Simplify each part of the expression.\newlineNow we simplify each part of the expression:\newline100(1)/(2)=11001/2=110100^{-(1)/(2)} = \frac{1}{100^{1/2}} = \frac{1}{10} because the square root of 100100 is 1010.\newlinex12((1)/(2))=x6=1x6x^{12*(-(1)/(2))} = x^{-6} = \frac{1}{x^6} because of the negative exponent rule.\newliney14((1)/(2))=y7y^{-14*(-(1)/(2))} = y^{7} because the negatives cancel out and we are left with a positive exponent.
  4. Combine Simplified Parts: Combine the simplified parts.\newlineNow we combine the simplified parts to get the final expression:\newline(110)×(1x6)×y7(\frac{1}{10}) \times (\frac{1}{x^6}) \times y^{7}
  5. Write Final Expression: Write the final expression with positive exponents only.\newlineTo ensure all exponents are positive, we keep y7y^{7} in the numerator and move (x6)(x^6) to the denominator:\newlineFinal expression: (y7)/(10x6)(y^{7})/(10x^{6})

More problems from Multiplication with rational exponents