Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(32x^(-40)y^(-20))^(-(1)/(5))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(32x40y20)15 \left(32 x^{-40} y^{-20}\right)^{-\frac{1}{5}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(32x40y20)15 \left(32 x^{-40} y^{-20}\right)^{-\frac{1}{5}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Apply the negative exponent rule which states that an=1ana^{-n} = \frac{1}{a^n}.
    (32x40y20)15(32x^{-40}y^{-20})^{-\frac{1}{5}}
    =1(32x40y20)15= \frac{1}{(32x^{-40}y^{-20})^{\frac{1}{5}}}
  2. Apply Power of a Power Rule: Apply the power of a power rule which states that (am)n=amn(a^m)^n = a^{m*n}.\newline1(32x40y20)15\frac{1}{(32x^{-40}y^{-20})^{\frac{1}{5}}}\newline= 13215×x40×(15)×y20×(15)\frac{1}{32^{\frac{1}{5}} \times x^{-40\times(\frac{1}{5})} \times y^{-20\times(\frac{1}{5})}}
  3. Simplify Exponents: Simplify the exponents by multiplying them with 15\frac{1}{5}.1(3215x8y4)\frac{1}{(32^{\frac{1}{5}} \cdot x^{-8} \cdot y^{-4})}
  4. Simplify Fifth Root: Simplify the fifth root of 3232. 321/532^{1/5} is the same as the fifth root of 3232, which is 22 because 25=322^5 = 32. 12x8y4\frac{1}{2 \cdot x^{-8} \cdot y^{-4}}
  5. Apply Negative Exponent Rule: Apply the negative exponent rule again to move the xx and yy terms to the numerator.\newline12x8y4\frac{1}{2 \cdot x^{-8} \cdot y^{-4}}\newline= x8y42\frac{x^8 \cdot y^4}{2}

More problems from Multiplication with rational exponents