Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

y+(3)/(2)(-(1)/(2)y-1)
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newliney+32(12y1) y+\frac{3}{2}\left(-\frac{1}{2} y-1\right) \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newliney+32(12y1) y+\frac{3}{2}\left(-\frac{1}{2} y-1\right) \newlineAnswer:
  1. Distribute and Multiply: First, we need to distribute the (3/2)(3/2) across the terms inside the parentheses.\newline(3/2)×((1/2)y)=(3/2)×(1/2)×y=(3/4)×y((3/2) \times (-(1/2)y) = - (3/2) \times (1/2) \times y = - (3/4) \times y(\newline\$(3/2) \times (-1) = - (3/2)\)
  2. Combine Terms with y: Now, we combine the distributed terms with the original y term. \(y - \left(\frac{3}{4}\right)y - \left(\frac{3}{2}\right)\)
  3. Find Common Denominator: To combine the \(y\) terms, we need a common denominator. The common denominator for \(1\) and \(4\) is \(4\).\(\newline\)\(y\) can be written as \(\frac{4}{4}y\), so we have:\(\newline\)\(\frac{4}{4}y - \frac{3}{4}y\)
  4. Subtract y Terms: Now, subtract the y terms: \((\frac{4}{4})y - (\frac{3}{4})y = (\frac{4-3}{4}) \cdot y = (\frac{1}{4})y\)
  5. Combine Terms: Finally, we combine the \((\frac{1}{4})y\) term with the constant term \(- (\frac{3}{2})\).\(\frac{1}{4}y - \frac{3}{2}\)
  6. Final Simplified Expression: We leave the expression in terms of \(y\) and as an improper fraction for the constant term.\(\newline\)The final simplified expression is:\(\newline\)\(\frac{1}{4}y - \frac{3}{2}\)

More problems from Roots of rational numbers