Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

-3k+(1)/(2)((3)/(2)k-3)
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newline3k+12(32k3) -3 k+\frac{1}{2}\left(\frac{3}{2} k-3\right) \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newline3k+12(32k3) -3 k+\frac{1}{2}\left(\frac{3}{2} k-3\right) \newlineAnswer:
  1. Distribute fractions in parentheses: Distribute the (1/2)(1/2) across the terms inside the parentheses.\newlineWe have the expression 3k+(1/2)((3/2)k3)-3k + (1/2)((3/2)k - 3). To simplify, we first need to distribute the (1/2)(1/2) to both (3/2)k(3/2)k and 3-3.\newline3k+(1/2)(3/2)k(1/2)(3)-3k + (1/2)(3/2)k - (1/2)(3)
  2. Multiply fractions: Multiply the fractions.\newlineNow we multiply the fractions (12)(\frac{1}{2}) and (32)k(\frac{3}{2})k, and (12)(\frac{1}{2}) and 33.\newline3k+(12×32)k(12×3)-3k + (\frac{1}{2} \times \frac{3}{2})k - (\frac{1}{2} \times 3)
  3. Simplify multiplication: Simplify the multiplication of the fractions. \newline(12×32)=34(\frac{1}{2} \times \frac{3}{2}) = \frac{3}{4} and (12×3)=32(\frac{1}{2} \times 3) = \frac{3}{2}, so we substitute these back into the expression.\newline3k+(34)k32-3k + (\frac{3}{4})k - \frac{3}{2}
  4. Combine like terms: Combine like terms.\newlineWe combine the terms with kk in them, which are 3k-3k and (3/4)k(3/4)k.\newlineTo combine them, we need a common denominator, which is 44. So we convert 3k-3k to (12/4)k(-12/4)k.\newline(12/4)k+(3/4)k3/2(-12/4)k + (3/4)k - 3/2
  5. Add coefficients of kk: Add the coefficients of kk.\newlineNow we add (124)(-\frac{12}{4}) and (34)(\frac{3}{4}) together.\newline(124+34)k32(-\frac{12}{4} + \frac{3}{4})k - \frac{3}{2}
  6. Simplify addition: Simplify the addition. \newline124+34=94-\frac{12}{4} + \frac{3}{4} = -\frac{9}{4}, so we substitute this back into the expression. \newline(94)k32(-\frac{9}{4})k - \frac{3}{2}
  7. Final simplified expression: The expression is now simplified. The simplified expression is (94)k32(-\frac{9}{4})k - \frac{3}{2}.

More problems from Distance formula