Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

-(1)/(2)((1)/(2)h+(1)/(2))+4h
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newline12(12h+12)+4h -\frac{1}{2}\left(\frac{1}{2} h+\frac{1}{2}\right)+4 h \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newline12(12h+12)+4h -\frac{1}{2}\left(\frac{1}{2} h+\frac{1}{2}\right)+4 h \newlineAnswer:
  1. Distribute and Simplify: First, distribute the negative one-half across the terms inside the parentheses.\newline12(12h+12)=1212h1212-\frac{1}{2}(\frac{1}{2}h+\frac{1}{2}) = -\frac{1}{2}\cdot\frac{1}{2}h - \frac{1}{2}\cdot\frac{1}{2}
  2. Simplify Fractions: Now, simplify the multiplication of the fractions. \newline12×12h=1×12×2h=14h-\frac{1}{2}\times\frac{1}{2}h = -\frac{1\times1}{2\times2}h = -\frac{1}{4}h\newline12×12=1×12×2=14-\frac{1}{2}\times\frac{1}{2} = -\frac{1\times1}{2\times2} = -\frac{1}{4}
  3. Combine Terms: Combine the simplified terms with the 4h4h term that is outside the parentheses.\newline(14)h(14)+4h-(\frac{1}{4})h - (\frac{1}{4}) + 4h
  4. Add Like Terms: Combine like terms by adding 14h-\frac{1}{4}h and 4h4h. \newline4h14h=164h14h=154h4h - \frac{1}{4}h = \frac{16}{4}h - \frac{1}{4}h = \frac{15}{4}h
  5. Final Simplified Expression: Now, bring down the constant term (1)/(4)-(1)/(4). The final simplified expression is (15/4)h(1)/(4)(15/4)h - (1)/(4).

More problems from Roots of rational numbers