Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-9+i)(-11+5i)
Answer:

Simplify the expression to a + bi form:\newline(9+i)(11+5i) (-9+i)(-11+5 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(9+i)(11+5i) (-9+i)(-11+5 i) \newlineAnswer:
  1. Multiply Real Parts: Multiply the real parts of the complex numbers.\newlineReal parts: 9-9 and 11-11\newlineMultiplication of real parts: (9)×(11)=99(-9) \times (-11) = 99
  2. Multiply Imaginary Parts: Multiply the imaginary parts of the complex numbers.\newlineImaginary parts: ii and 5i5i\newlineMultiplication of imaginary parts: i×5i=5i2i \times 5i = 5i^2\newlineSince i2=1i^2 = -1, we have 5i2=5(1)=55i^2 = 5(-1) = -5
  3. Multiply Real and Imaginary: Multiply the real part of the first complex number by the imaginary part of the second complex number.\newlineReal part of the first complex number: 9-9\newlineImaginary part of the second complex number: 5i5i\newlineMultiplication: (9)×(5i)=45i(-9) \times (5i) = -45i
  4. Combine Results: Multiply the imaginary part of the first complex number by the real part of the second complex number.\newlineImaginary part of the first complex number: ii\newlineReal part of the second complex number: 11-11\newlineMultiplication: i×(11)=11ii \times (-11) = -11i
  5. Final Expression: Combine the results from steps 11 to 44 to get the final expression.\newlineFrom step 11: 9999\newlineFrom step 22: 5-5\newlineFrom step 33: 45i-45i\newlineFrom step 44: 11i-11i\newlineCombine: 995+(45i)+(11i)99 - 5 + (-45i) + (-11i)
  6. Simplify Combined Expression: Simplify the combined expression by adding real parts and imaginary parts separately.\newlineReal parts: 995=9499 - 5 = 94\newlineImaginary parts: 45i11i=56i-45i - 11i = -56i\newlineFinal expression: 9456i94 - 56i

More problems from Write a quadratic function from its x-intercepts and another point