Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(3+10 i)(-4-6i)
Answer:

Simplify the expression to a + bi form:\newline(3+10i)(46i) (3+10 i)(-4-6 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(3+10i)(46i) (3+10 i)(-4-6 i) \newlineAnswer:
  1. Distribute Terms: Distribute each term in the first complex number by each term in the second complex number.\newlineWe will use the distributive property (a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d) = ac + ad + bc + bd.\newline(3+10i)(46i)=3(4)+3(6i)+10i(4)+10i(6i)(3+10i)(-4-6i) = 3(-4) + 3(-6i) + 10i(-4) + 10i(-6i)
  2. Multiply Parts: Multiply the real parts and the imaginary parts.\newline3(4)=123(-4) = -12 (real part)\newline3(6i)=18i3(-6i) = -18i (imaginary part)\newline10i(4)=40i10i(-4) = -40i (imaginary part)\newline10i(6i)=6010i(-6i) = 60 (real part, because ii=1i*i = -1)
  3. Combine Like Terms: Combine like terms.\newlineCombine the real parts: 12+60-12 + 60\newlineCombine the imaginary parts: 18i40i-18i - 40i
  4. Perform Addition: Perform the addition.\newlineReal parts: 12+60=48-12 + 60 = 48\newlineImaginary parts: 18i40i=58i-18i - 40i = -58i
  5. Final Answer: Write the final answer in a+bia + bi form.\newlineThe simplified expression is 4858i48 - 58i.

More problems from Write a quadratic function from its zeros