Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(2-9i)^(2)
Answer:

Simplify the expression to a + bi form:\newline(29i)2 (2-9 i)^{2} \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(29i)2 (2-9 i)^{2} \newlineAnswer:
  1. Expand Expression: Expand the expression using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, where a=2a = 2 and b=9ib = 9i.(29i)2=(2)22(2)(9i)+(9i)2(2 - 9i)^2 = (2)^2 - 2\cdot(2)\cdot(9i) + (9i)^2
  2. Calculate Terms: Calculate each term separately.\newline(2)2=4(2)^2 = 4\newline2(2)(9i)=36i-2*(2)*(9i) = -36i\newline(9i)2=81i2(9i)^2 = 81i^2\newlineSince i2=1i^2 = -1, we have 81i2=81(1)=8181i^2 = 81*(-1) = -81
  3. Combine Calculated Terms: Combine the calculated terms.\newline(29i)2=436i81(2 - 9i)^2 = 4 - 36i - 81
  4. Simplify Expression: Simplify the expression by combining like terms. 436i81=(481)36i=7736i4 - 36i - 81 = (4 - 81) - 36i = -77 - 36i

More problems from Simplify rational expressions