Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-12+2i)(-3+i)
Answer:

Simplify the expression to a + bi form:\newline(12+2i)(3+i) (-12+2 i)(-3+i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(12+2i)(3+i) (-12+2 i)(-3+i) \newlineAnswer:
  1. Distribute Terms: Distribute each term in the first complex number by each term in the second complex number.\newline(12+2i)(3+i)=(12×3)+(12×i)+(2i×3)+(2i×i)(-12+2i)(-3+i) = (-12 \times -3) + (-12 \times i) + (2i \times -3) + (2i \times i)
  2. Perform Multiplication: Perform the multiplication for each term.\newline(12×3)=36(-12 \times -3) = 36\newline(12×i)=12i(-12 \times i) = -12i\newline(2i×3)=6i(2i \times -3) = -6i\newline(2i×i)=2i2(2i \times i) = 2i^2
  3. Apply i2i^2 Rule: Remember that i2=1i^2 = -1, and apply this to simplify the term with i2i^2.\newline2i2=2(1)=22i^2 = 2(-1) = -2
  4. Combine Like Terms: Combine like terms. \newline36+(12i)+(6i)+(2)=36212i6i=3418i36 + (-12i) + (-6i) + (-2) = 36 - 2 - 12i - 6i = 34 - 18i
  5. Final Answer: Write the final answer in a+bia + bi form.\newlineThe simplified expression is 3418i34 - 18i.

More problems from Write a quadratic function from its zeros