Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression completely.

sqrt(-4)-2root(3)(-125)-3root(3)(-125)+sqrt1
Answer:

Simplify the expression completely.\newline42125331253+1 \sqrt{-4}-2 \sqrt[3]{-125}-3 \sqrt[3]{-125}+\sqrt{1} \newlineAnswer:

Full solution

Q. Simplify the expression completely.\newline42125331253+1 \sqrt{-4}-2 \sqrt[3]{-125}-3 \sqrt[3]{-125}+\sqrt{1} \newlineAnswer:
  1. Square Root of 4-4: We need to simplify each term in the expression separately. Let's start with the first term, 4\sqrt{-4}.\newlineThe square root of a negative number involves an imaginary number. The square root of 1-1 is defined as the imaginary unit ii.\newlineSo, 4=4×1=2i\sqrt{-4} = \sqrt{4} \times \sqrt{-1} = 2i.
  2. Simplify 212532\sqrt[3]{-125}: Now let's simplify the second term, 212532\sqrt[3]{-125}. The cube root of 125-125 is 5-5 because (5)3=125(-5)^3 = -125. So, 21253=2×(5)=102\sqrt[3]{-125} = 2 \times (-5) = -10.
  3. Simplify 312533\sqrt[3]{-125}: Next, we simplify the third term, 312533\sqrt[3]{-125}. Using the same logic as the previous step, 31253=3×(5)=153\sqrt[3]{-125} = 3 \times (-5) = -15.
  4. Square Root of 11: Finally, let's simplify the fourth term, 1\sqrt{1}.\newlineThe square root of 11 is 11 because 12=11^2 = 1.\newlineSo, 1=1\sqrt{1} = 1.
  5. Combine Simplified Terms: Now we combine all the simplified terms to get the final simplified expression. 2i1015+1=2i242i - 10 - 15 + 1 = 2i - 24.

More problems from Multiplication with rational exponents