Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression completely.

-root(3)(729)-3sqrt36+sqrt(-100)+3root(3)(125)
Answer:

Simplify the expression completely.\newline7293336+100+31253 -\sqrt[3]{729}-3 \sqrt{36}+\sqrt{-100}+3 \sqrt[3]{125} \newlineAnswer:

Full solution

Q. Simplify the expression completely.\newline7293336+100+31253 -\sqrt[3]{729}-3 \sqrt{36}+\sqrt{-100}+3 \sqrt[3]{125} \newlineAnswer:
  1. Cube Root of 729729: First, we will simplify each term in the expression separately, starting with the cube root of 729729.\newline-\sqrt[\(3]{729729} = -\sqrt[33]{99\times99\times99} = -\sqrt[33]{99^33} = 9-9
  2. Square Root of 3636: Next, we simplify the square root of 3636.\newline336=3×6=18-3\sqrt{36} = -3\times 6 = -18
  3. Square Root of 100-100: Now, we simplify the square root of 100-100. Since the square root of a negative number is not a real number, we will express it in terms of ii, where ii is the imaginary unit.\newline100=100×1=10i\sqrt{-100} = \sqrt{100} \times \sqrt{-1} = 10i
  4. Cube Root of 125125: Finally, we simplify the cube root of 125125. 1253=5×5×53=533=3×5=15\sqrt[3]{125} = \sqrt[3]{5\times5\times5} = \sqrt[3]{5^3} = 3\times5 = 15
  5. Combine Simplified Terms: Now we combine all the simplified terms to get the final answer.\newlineAnswer = 918+10i+15=12+10i-9 - 18 + 10i + 15 = -12 + 10i

More problems from Roots of rational numbers