Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression completely.

4root(3)(64)-sqrt4+root(3)(-729)
Answer:

Simplify the expression completely.\newline46434+7293 4 \sqrt[3]{64}-\sqrt{4}+\sqrt[3]{-729} \newlineAnswer:

Full solution

Q. Simplify the expression completely.\newline46434+7293 4 \sqrt[3]{64}-\sqrt{4}+\sqrt[3]{-729} \newlineAnswer:
  1. Find Cube Root of 6464: Simplify 46434\sqrt[3]{64}. The cube root of 6464 is 44, because 43=644^3 = 64. So, 4643=4×4=164\sqrt[3]{64} = 4 \times 4 = 16.
  2. Find Square Root of 44: Simplify 4\sqrt{4}.\newlineThe square root of 44 is 22, because 22=42^2 = 4.\newlineSo, 4=2\sqrt{4} = 2.
  3. Find Cube Root of 729-729: Simplify 7293\sqrt[3]{-729}.\newlineThe cube root of 729-729 is 9-9, because (9)3=729(-9)^3 = -729.\newlineSo, 7293\sqrt[3]{-729} = 9-9.
  4. Combine Results: Combine the results from steps 11, 22, and 33.\newlineWe have 1616 from step 11, 2-2 from step 22 (since we subtract the square root of 44), and 9-9 from step 33.\newlineCombine these values: 162916 - 2 - 9.
  5. Perform Subtraction: Perform the subtraction. 1629=149=516 - 2 - 9 = 14 - 9 = 5.

More problems from Roots of rational numbers