Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. \newline1054\sqrt{\frac{105}{4}}

Full solution

Q. Simplify. \newline1054\sqrt{\frac{105}{4}}
  1. Apply Quotient Rule: Apply the quotient rule of radicals to 1054\sqrt{\frac{105}{4}}.1054=1054\sqrt{\frac{105}{4}} = \frac{\sqrt{105}}{\sqrt{4}}
  2. Evaluate 105\sqrt{105}: Evaluate 105\sqrt{105}. Find the prime factorization of 105105 and try to make identical pairs of factors. 105=3×5×7\sqrt{105} = \sqrt{3 \times 5 \times 7} Since there are no pairs of identical factors, we cannot simplify it further.
  3. Find Prime Factorization: Now, let's evaluate 4\sqrt{4}.\newline4=2×2\sqrt{4} = \sqrt{2 \times 2}\newline= 22
  4. Evaluate 4\sqrt{4}: Combine the results from the previous steps.\newline\sqrt{\frac{105}{4}} = \frac{\sqrt{105}}{\sqrt{4}}\(\newline= \frac{\sqrt{105}}{2}\newline= \frac{\sqrt{3 \times 5 \times 7}}{2}\newline= \frac{\sqrt{3} \times \sqrt{5} \times \sqrt{7}}{2}\)\newlineSince none of the square roots can be simplified further, this is the final simplified form.

More problems from Simplify radical expressions involving fractions