Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Remove all perfect squares from inside the square root. Assume aa is positive. 108a6\sqrt{108a^6}

Full solution

Q. Simplify. Remove all perfect squares from inside the square root. Assume aa is positive. 108a6\sqrt{108a^6}
  1. Factorize 108108 and a6a^6: First, let's factorize 108108 and a6a^6 completely.\newline108=22×33108 = 2^2 \times 3^3 and a6=(a2)3a^6 = (a^2)^3.
  2. Rewrite expression using factorization: Now, rewrite the expression under the square root using the factorization:\newline108a6=(22×33)×(a2)3\sqrt{108a^6} = \sqrt{(2^2 \times 3^3) \times (a^2)^3}.
  3. Simplify square root: Next, simplify the square root by taking out the squares:\newline22×33×a6=2×33/2×a3\sqrt{2^2 \times 3^3 \times a^6} = 2 \times 3^{3/2} \times a^3.
  4. Simplify 33/23^{3/2}: Simplify 33/23^{3/2} to 3×31/23 \times 3^{1/2} or 333\sqrt{3}:\newline2×3×3×a3=6a332 \times 3 \times \sqrt{3} \times a^3 = 6a^3\sqrt{3}.