Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline655\frac{6}{-5 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline655\frac{6}{-5 - \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 55-5 - \sqrt{5}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 55-5 - \sqrt{5}: 5+5-5 + \sqrt{5}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator to rationalize it.\newlineExpression: 655\frac{6}{-5 - \sqrt{5}}\newlineMultiply by 5+55+5\frac{-5 + \sqrt{5}}{-5 + \sqrt{5}}\newline6×(5+5)((55))×(5+5)\frac{6 \times (-5 + \sqrt{5})}{((-5 - \sqrt{5})) \times (-5 + \sqrt{5})}
  3. Simplify Numerator: Simplify the numerator by distributing the 66.6×(5)+6×56 \times (-5) + 6 \times \sqrt{5}=30+6×5= -30 + 6 \times \sqrt{5}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2.\newline(5)2(5)2(-5)^2 - (\sqrt{5})^2\newline= 25525 - 5\newline= 2020
  5. Write Simplified Expression: Write the simplified expression with the rationalized denominator. (30+65)/20(-30 + 6 \cdot \sqrt{5}) / 20
  6. Final Simplification: Simplify the expression by dividing each term in the numerator by the denominator.\newline3020+6520-\frac{30}{20} + \frac{6 \cdot \sqrt{5}}{20}\newline= 32+3510-\frac{3}{2} + \frac{3 \cdot \sqrt{5}}{10}

More problems from Simplify radical expressions using conjugates