Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline565\frac{5}{-6 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline565\frac{5}{-6 - \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 65-6 - \sqrt{5}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 65-6 - \sqrt{5}: 6+5-6 + \sqrt{5}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the fraction by (-6 + \sqrt{5})/(-6 + \sqrt{5})\(\newline\).\newline565×6+56+5\frac{5}{-6 - \sqrt{5}} \times \frac{-6 + \sqrt{5}}{-6 + \sqrt{5}}
  3. Simplify Numerator: Simplify the numerator by distributing the multiplication.\newline5×(6+5)5 \times (-6 + \sqrt{5})\newline= 5×(6)+5×(5)5 \times (-6) + 5 \times (\sqrt{5})\newline= 30+55-30 + 5\sqrt{5}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(65)(6+5)(-6 - \sqrt{5}) * (-6 + \sqrt{5})\newline= (6)2(5)2(-6)^2 - (\sqrt{5})^2\newline= 36536 - 5\newline= 3131
  5. Write Simplified Expression: Write the simplified expression. \newline(30+55)/31(-30 + 5\sqrt{5})/31\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates