Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline563\frac{5}{-6 - \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator.\newline563\frac{5}{-6 - \sqrt{3}}
  1. Find Conjugate: Select the conjugate of 63-6 - \sqrt{3}.\newlineThe conjugate of aba - \sqrt{b} is a+ba + \sqrt{b}.\newlineSo, the conjugate of 63-6 - \sqrt{3} is 6+3-6 + \sqrt{3}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator.\newlineSo, we multiply 563\frac{5}{-6 - \sqrt{3}} by 6+36+3\frac{-6 + \sqrt{3}}{-6 + \sqrt{3}}.
  3. Multiply Numerator: Apply the multiplication to the numerator.\newlineMultiply 55 by (6+3)(-6 + \sqrt{3}).\newline5×(6+3)=30+535 \times (-6 + \sqrt{3}) = -30 + 5\sqrt{3}
  4. Multiply Denominator: Apply the multiplication to the denominator.\newlineMultiply (63)(-6 - \sqrt{3}) by (6+3)(-6 + \sqrt{3}).\newlineThis is a difference of squares which is (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2.\newlineSo, (6)2(3)2=363=33(-6)^2 - (\sqrt{3})^2 = 36 - 3 = 33.
  5. Write Simplified Expression: Write the simplified expression.\newlineNow we have (30+53)/33(-30 + 5\sqrt{3})/33.\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates