Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline522\frac{5}{-2 - \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator. \newline522\frac{5}{-2 - \sqrt{2}}
  1. Select Conjugate: Select the conjugate of 22-2 - \sqrt{2}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 22-2 - \sqrt{2}: 2+2-2 + \sqrt{2}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator to rationalize it.\newline522×2+22+2\frac{5}{-2 - \sqrt{2}} \times \frac{-2 + \sqrt{2}}{-2 + \sqrt{2}}
  3. Simplify Numerator: Simplify the numerator by distributing the 55 across the conjugate.5×(2+2)5 \times (-2 + \sqrt{2})= 5×(2)+5×(2)5 \times (-2) + 5 \times (\sqrt{2})= 10+52-10 + 5\sqrt{2}
  4. Simplify Denominator: Simplify the denominator by using the difference of squares formula.\newline(22)(2+2)(-2 - \sqrt{2}) * (-2 + \sqrt{2})\newline=(2)2(2)2= (-2)^2 - (\sqrt{2})^2\newline=42= 4 - 2\newline=2= 2
  5. Combine Numerator and Denominator: Combine the simplified numerator and denominator.\newline(10+52)/2(-10 + 5\sqrt{2})/2\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates