Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline283\frac{2}{-8 - \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline283\frac{2}{-8 - \sqrt{3}}
  1. Find Conjugate: Select the conjugate of 83-8 - \sqrt{3}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 83-8 - \sqrt{3}: 8+3-8 + \sqrt{3}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineWhich expression can be used to rationalize the denominator?\newlineMultiply (8+3)(-8 + \sqrt{3}) with 22, and 83-8 - \sqrt{3}.\newline2(8+3)(83)(8+3)\frac{2 \cdot (-8 + \sqrt{3})}{(-8 - \sqrt{3}) \cdot (-8 + \sqrt{3})}
  3. Simplify Numerator: Simplify the numerator: 2×(8+3)2 \times (-8 + \sqrt{3})\newline2×(8)+2×(3)2 \times (-8) + 2 \times (\sqrt{3})\newline=16+23= -16 + 2\sqrt{3}
  4. Simplify Denominator: Simplify the denominator: (83)(8+3)(-8 - \sqrt{3}) * (-8 + \sqrt{3})\newlineUsing the difference of squares formula: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(8)2(3)2(-8)^2 - (\sqrt{3})^2\newline=643= 64 - 3\newline=61= 61
  5. Combine Numerator and Denominator: Combine the simplified numerator and denominator. \newline(16+23)/61(-16 + 2\sqrt{3})/61\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates