Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
ln((1)/(e^(4)))
Answer:

Simplify ln(1e4) \ln \left(\frac{1}{e^{4}}\right) \newlineAnswer:

Full solution

Q. Simplify ln(1e4) \ln \left(\frac{1}{e^{4}}\right) \newlineAnswer:
  1. Identify Components: Identify the components of the expression ln(1e4)\ln\left(\frac{1}{e^{4}}\right). In ln(1e4)\ln\left(\frac{1}{e^{4}}\right), we have a natural logarithm of a fraction where the denominator is ee raised to the power of 44.
  2. Apply Power Rule: Apply the logarithm power rule.\newlineThe power rule of logarithms states that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a). We can apply this rule in reverse since the denominator is ee raised to the power of 44.\newlineln(1e4)=ln(1)ln(e4)\ln\left(\frac{1}{e^{4}}\right) = \ln(1) - \ln(e^{4})
  3. Simplify Logarithms: Simplify the logarithms.\newlineWe know that ln(1)=0\ln(1) = 0 because e0=1e^0 = 1. Also, ln(e4)=4\ln(e^{4}) = 4 because the base of the natural logarithm is ee.\newlineln(1e4)=04\ln\left(\frac{1}{e^{4}}\right) = 0 - 4
  4. Perform Subtraction: Perform the subtraction.\newline04=40 - 4 = -4

More problems from Evaluate rational exponents