Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
ln((1)/(e^(3)))
Answer:

Simplify ln(1e3) \ln \left(\frac{1}{e^{3}}\right) \newlineAnswer:

Full solution

Q. Simplify ln(1e3) \ln \left(\frac{1}{e^{3}}\right) \newlineAnswer:
  1. Identify Components: Identify the components of the natural logarithm expression. ln(1e3)\ln\left(\frac{1}{e^{3}}\right) Here, we have the natural logarithm of a fraction where the denominator is ee raised to the power of 33.
  2. Apply Power Rule: Apply the logarithm power rule.\newlineThe power rule of logarithms states that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a). In this case, we can apply the rule in reverse to move the exponent on ee out in front of the logarithm.\newlineln(1e3)=ln(1)ln(e3)\ln\left(\frac{1}{e^{3}}\right) = \ln(1) - \ln(e^{3})
  3. Simplify Logarithms: Simplify the logarithm of 11 and the logarithm of ee to the power of 33.
    ln(1)\ln(1) is 00 because e0=1e^0 = 1.
    ln(e3)\ln(e^{3}) is 33 because ln(e)=1\ln(e) = 1, and using the power rule, 3ln(e)=31=33\cdot\ln(e) = 3\cdot1 = 3.
    So, ee00
  4. Calculate Final Result: Calculate the final result.\newline03=30 - 3 = -3

More problems from Evaluate rational exponents