Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Express your answer using positive exponents. \newline(6g8)(7g3)(4g3)(6g^8)(7g^3)(4g^3)

Full solution

Q. Simplify. Express your answer using positive exponents. \newline(6g8)(7g3)(4g3)(6g^8)(7g^3)(4g^3)
  1. Multiply Coefficients: Multiply the coefficients (numerical parts) of the terms.\newlineWe have the coefficients 66, 77, and 44. Multiplying these together gives us:\newline6×7×4=42×4=1686 \times 7 \times 4 = 42 \times 4 = 168
  2. Apply Product Rule: Apply the product rule for exponents to the variables.\newlineThe product rule states that when multiplying like bases, you add the exponents. We have g8g^8, g3g^3, and g3g^3. Adding the exponents gives us:\newline8+3+3=148 + 3 + 3 = 14\newlineSo, g8×g3×g3=g8+3+3=g14g^8 \times g^3 \times g^3 = g^{8+3+3} = g^{14}
  3. Combine Results: Combine the results from Step 11 and Step 22 to write the final simplified expression.\newlineWe have the coefficient 168168 from Step 11 and the variable part g14g^{14} from Step 22. Combining these gives us:\newline168g14168g^{14}