Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify each expression 
(5)/(1-sqrt7)

Simplify each expression.\newline517 \frac{5}{1-\sqrt{7}}

Full solution

Q. Simplify each expression.\newline517 \frac{5}{1-\sqrt{7}}
  1. Identify Conjugate of Denominator: Identify the conjugate of the denominator.\newlineThe conjugate of (17)(1 - \sqrt{7}) is (1+7)(1 + \sqrt{7}). We will multiply the numerator and the denominator by this conjugate to rationalize the denominator.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate. (517)1+71+7=5(1+7)(17)(1+7)(\frac{5}{1 - \sqrt{7}}) \cdot \frac{1 + \sqrt{7}}{1 + \sqrt{7}} = \frac{5 \cdot (1 + \sqrt{7})}{(1 - \sqrt{7}) \cdot (1 + \sqrt{7})}
  3. Apply Difference of Squares: Apply the difference of squares to the denominator.\newline(17)(1+7)=12(7)2=17=6(1 - \sqrt{7}) * (1 + \sqrt{7}) = 1^2 - (\sqrt{7})^2 = 1 - 7 = -6
  4. Distribute Numerator: Distribute the numerator.\newline5×(1+7)=5+5×75 \times (1 + \sqrt{7}) = 5 + 5 \times \sqrt{7}
  5. Combine Results: Combine the results from Step 33 and Step 44.\newline(5+5×7)/(6)(5 + 5 \times \sqrt{7})/(-6)
  6. Simplify Expression: Simplify the expression by dividing each term in the numerator by the denominator.\newline(56)+(576)=56(576)(\frac{5}{-6}) + (\frac{5 \cdot \sqrt{7}}{-6}) = -\frac{5}{6} - (\frac{5 \cdot \sqrt{7}}{6})

More problems from Roots of integers