Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
e^((1)/(3)ln 125)
Answer:

Simplify e13ln125 e^{\frac{1}{3} \ln 125} \newlineAnswer:

Full solution

Q. Simplify e13ln125 e^{\frac{1}{3} \ln 125} \newlineAnswer:
  1. Identify Base and Exponent: Identify the base and the exponent in e(13ln125)e^{\left(\frac{1}{3}\ln 125\right)}.\newlineIn e(13ln125)e^{\left(\frac{1}{3}\ln 125\right)},\newlineBase: ee\newlineExponent: (13ln125)\left(\frac{1}{3}\ln 125\right)
  2. Use Exponent Property: Use the property of exponents that elnx=xe^{\ln x} = x to simplify the expression.\newlineSince ln125\ln 125 is the natural logarithm of 125125, we can rewrite the expression as:\newlinee(1)/(3)ln125=(eln125)1/3e^{(1)/(3)\ln 125} = (e^{\ln 125})^{1/3}
  3. Simplify Using Property: Simplify the expression using the property from Step 22.\newlineeln125=125e^{\ln 125} = 125\newlineSo, (eln125)13=12513(e^{\ln 125})^{\frac{1}{3}} = 125^{\frac{1}{3}}
  4. Calculate Cube Root: Calculate the cube root of 125125. 125125 is 55 cubed, so the cube root of 125125 is 55. 125(1/3)=5125^{(1/3)} = 5

More problems from Evaluate rational exponents