Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newliney37y107y^{\frac{3}{7}} \cdot y^{\frac{10}{7}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newliney37y107y^{\frac{3}{7}} \cdot y^{\frac{10}{7}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify and Apply Property: Identify the equation and apply the property of exponents for multiplication.\newlineWhen multiplying two exponents with the same base, we add the exponents: \newliney37×y107=y37+107y^{\frac{3}{7}} \times y^{\frac{10}{7}} = y^{\frac{3}{7} + \frac{10}{7}}
  2. Add Exponents: Add the exponents.\newline37+107=(3+10)7=137\frac{3}{7} + \frac{10}{7} = \frac{(3 + 10)}{7} = \frac{13}{7}\newlineSo, y37×y107=y137y^{\frac{3}{7}} \times y^{\frac{10}{7}} = y^{\frac{13}{7}}
  3. Write Final Answer: Write the final answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newlineThe final answer is y137y^{\frac{13}{7}}, which is already in the correct form.

More problems from Simplify expressions involving rational exponents