Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newlinev73v43v^{\frac{7}{3}} \cdot v^{\frac{4}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______\newline

Full solution

Q. Simplify. Assume all variables are positive.\newlinev73v43v^{\frac{7}{3}} \cdot v^{\frac{4}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______\newline
  1. Identify Equation: Identify the equation and apply the exponent rule for multiplication.\newlineWhen multiplying two exponents with the same base, we add the exponents: am×an=am+na^m \times a^n = a^{m+n}.\newlinev73×v43=v73+43v^{\frac{7}{3}} \times v^{\frac{4}{3}} = v^{\frac{7}{3} + \frac{4}{3}}.
  2. Apply Exponent Rule: Add the exponents.\newline73+43=(7+4)3\frac{7}{3} + \frac{4}{3} = \frac{(7 + 4)}{3}.\newline73+43=113\frac{7}{3} + \frac{4}{3} = \frac{11}{3}.
  3. Add Exponents: Write the final answer with the combined exponent.\newlinev73×v43=v113v^{\frac{7}{3}} \times v^{\frac{4}{3}} = v^{\frac{11}{3}}.

More problems from Simplify expressions involving rational exponents